If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-3.5x-11.76=0
a = 1; b = -3.5; c = -11.76;
Δ = b2-4ac
Δ = -3.52-4·1·(-11.76)
Δ = 59.29
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3.5)-\sqrt{59.29}}{2*1}=\frac{3.5-\sqrt{59.29}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3.5)+\sqrt{59.29}}{2*1}=\frac{3.5+\sqrt{59.29}}{2} $
| -b/3=9 | | 22=6+n | | 4x+8=2x-6-5x | | 1/2m=3/2 | | 66=6b=100 | | 5.4s+0.6s−12=−42 | | -3y+9+4y=8–5 | | 2−2/1 n=3n+16 | | 2y=-0.4 | | 3+4x=71 | | -9x+13=58 | | x-1=59 | | 3a–5=31 | | 5x-13+x=149 | | x=180-114 | | #7r-8=-14 | | 4x+1=105 | | 8x+10=33 | | s=4-2s | | 7x+3+8x-8=180 | | 2x+104=x+76 | | .2⋅109a=29 | | 6w-1=13 | | 9^(2+r)=18(9^r) | | -6u=-6u+2 | | 15x-27=18 | | r=8-r | | 27x+50=x^2+27x-50 | | 3j=2j-9 | | 60+70+x+59=180 | | 20/30=w/12 | | 23+135+2x+6=180 |